INTERNSHIP AT CSIRO

COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANIZATION
THE EXPERIENCE & OUTCOMES

BY
ABIODUN OKUNOLA
MASTERS OF GLOBAL FOOD & AGRIBUSINESS

. 1

Structure of presentation

- 1) Internship program (CSIRO's profile, internship arrangements)
- 2) Research on biofuels, landuse and Green House Gases.
- 3) Outcomes

The Internship Program

- ➤ CSIRO's profile
- ➤ Internship arrangements
 - supervision
 - reporting
 - intern's responsibilities
 - internship location, division

3

Research and Methodology

- Links amongst Biofuels, Land-use change and Green House Gases
 - -Dimension and types of biofuels
 - -Land-use and Land-use change
- Green House Gases and global warming
- Significance of study- climate change impacts our well-being (food security, health, flooding, desertification)

Δ

DIMENSIONS/TYPES OF BIOFUELS

- Fuel from living things vs fossil fuel
- First generation
- Second generation
- Third generation
- Fourth generation

Land-Use & Land-Use Change

- Land-use: activity on land. Covers broad land-use categories. Vegetation covering earth's surface(IPCC,2003a)
- Categories: forest, cropland, grassland, wetlands, settlements and other land.
- Direct Land-use change: feedstock for biofuels displace existing land-use. May lead to change in carbon stock of land.
- Indirect Land-use change (ILUC):displacement of prior activity induces land-use changes elsewhere.

7

Green-House Gases-GHGs

 GHGs, - water vapour*, NO2, CO2, Methane, fluorocarbons

- Importance of GHGs- keep earth 33 degrees Celsius warmer
- GHGs and the environment-climate change due to increased quantity

EXPLORING THE LINKS...

- Increasing Biofuels mandates lead to LUC and ILUC
- LUC and ILUC increases GHG emission through deforestation (international leakages)
- Increased GHG emission (carbon emission) accelerates climate change
- Massive acquisition of land (Land grab) in global south as negative externality of increasing Biofuel mandates

THE LINKS CONTD...

Table 1. Comparison of corn ethanol and gasoline greenhouse gasses with and without land-use change by stage of production and use (grams of GHGs CO₂ equivalents per M) of energy in fuel) (28). Figures in total column may not sum perfectly because of rounding in each row. Land-use change was amortized over 30 years. Dash entries indicate "not included."

Source of fuel	Making feedstock	Refining fuel	Vehicle operation (burning fuel)	Net land-use effects			
				Feedstock carbon uptake from atmosphere (GREET)	Land- use change	Total GHGs	% Change in net GHGs versus gasoline
Gasoline	+4	+15	+72	0	-	+92	-
Corn ethanol (GREET)	+24	+40	+71	-62	-	+74 +135 without feedstock credit	-20% +47% without feedstock credit
Corn ethanol plus land	-24	+40	+71	(2	. 104	+177	
use change Biomass ethanol	+24	+40	+/1	-62	+104	+1//	+93%
(GREET) Biomass ethanol plus land	+10	+9	+71	-62	-	+27	-70%
use change	+10	+9	+71	-62	+111	+138	+50%

• Source: Searchinger et al (2008)

(GREET-Greenhouse gases Regulated Emissions and Energy use in Transport) MODEL

13

LINKS CONTD...

- Leakage = unintentional side-effect(s)
- Biocropping may cause shift of current land-use
- (e.g., soy, wheat...) to other areas; indirect
- land-use cannot be "traced back" to project
- • Carbon release from indirect land-use change
- impact may offset GHG benefits from biofuels
- (depending on time horizon)

WAY FORWARD...

- Utilise fourth generation biofuel to meet global energy needs in an environmentally sustainable manner
- Use of crop species that thrives on marginal land e.g. Jatropha curcas to biodiesel.
- Entrench truly free and fair trade relationships

15

METHODOLOGY

- Desk Research
- Literature Review
- Guidance and discussion with CSIRO Supervisor

INTERNSHIP OUTCOMES

- Development of thesis topic.
- Deeper and broader awareness of biofuel, land-use and GHG issues
- Attendance at training, workshops, seminars.
- · Improved technical and administrative skills
- · Enhanced personal network.
- · Access to CSIRO physical and virtual libraries

. . . .

CONCLUSION

- The internship gave an excellent opportunity for developing my research skills, improving personal networks and identifying topic for my research project.
- There is a need to further explore the Land Grab phenomenon as a form of international leakage and its impact on rural sustainable livelihoods.

REFERENCES

- Achard, F., H. D. Eva, P. Mayaux, H. J. Stibig and A. Belward (2004). Improved
 estimates of net carbon emissions from land cover change in the tropics for the
 1990s. Global Biogeochemical Cycles18(2).
- Alig, R. J., D. M. Adams and B. A. McCarl (1998). Impacts of Incorporating Land Exchanges Between Forestry and Agriculture in Sector Models. Journal of Agricultural and Applied Economics30(2): 389-401.
- Dyson, F. J. (1977). Can we control the carbon dioxide in the atmosphere. Energy (UK)
- HEATON, E. A., DOHLEMAN, F. G. and LONG, S. P. (2008), 'Meeting US biofuel goals with less land: the potential of Miscanthus' Global Change Biology, 14: 2000–2014. doi: 10.1111/j.1365-2486.2008.01662.x
- Searchinger, T., Heimlich R., R.A. Houghton, F. Dong, A. Elobeid, J. Fabiosa, S. Tokgoz, D. Hayes, T.-H. Yu 'Use of US croplands for biofuels increases greenhouse gases through emissions from land use change'
- Fargione, J., Hill, J., Tilman, D., Polasky, S., Hawthorne, P., 2008. 'Land clearing and the biofuel carbon debt' Science Express 7 February. www.sciencexpress.org Science 1152747.
- IPCC,2003 a. Good Practice Guidance for Land-Use,Land Use Change and Forestry.
 IPCC National Greenhouse Inventories Programme.
- www.oeko.de/service/bio